
DEPARTMENT OF DEFENCE

DEFENCE SCIENCE & TECHNOLOGY ORGANISATION DSTO

IDDM: Intrusion Detection using
Data Mining Techniques

Tamas Abraham

DSTO-GD-0286

DISTRIBUTION STATEMENT A
Approved for Public Release

Distribution Unlimited

IDDM: Intrusion Detection using Data Mining
Techniques

Tamas Abraham

Information Technology Division
Electronics and Surveillance Research Laboratory

DSTO-GD-0286

ABSTRACT

The IDDM project aims to determine the feasibility and effectiveness of data mining
techniques in real-time intrusion detection and produce solutions for this purpose.

Traditionally, data mining is designed to operate on large off-line data sets. Previous
attempts to apply the discipline in real-time environments met with varying success. In
this paper, we overview earlier attempts to employ data mining principles in intrusion
detection and present a possible system architecture for this purpose. As a
consequence, we show that by combining data mining algorithms with agent
technologies, near real-time operation may be attained.

20010720 076
RELEASE LIMITATION

Approved for public release

DEPARTMENT OF DEFENCE

DEFENCE SCIENCE & TECHNOLOGY ORGANISATION DSTO
f\Q Fol- io-zoa^

Published by

DSTO Electronics and Surveillance Research Laboratory
PO Box 1500
Salisbury South Australia 5108 Australia

Telephone: (08) 8259 5555
Fax: (08)8259 6567
© Commomvealth of Australia 2001
AR-011-868
May 2001

APPROVED FOR PUBLIC RELEASE

IDDM: Intrusion Detection using Data Mining
Techniques

Executive Summary

The IDDM project investigates the potential use of the data mining paradigm in near
real-time intrusion detection in order to develop techniques for the defence of
computing networks.

To protect networks, intrusion detection systems aim to recognise attacks with two
primary requirements: high detection and low false alarm rate. As attacks manifest
themselves in two categories, those that are known and those that have not been seen
previously, it is imperative that good descriptions of existing attacks as well as normal
network behaviour are available. Data mining is recognised as a useful tool for
extracting regularities in data and thus has been the target of some investigations for
its use in intrusion detection. The IDDM project focuses on the use of data mining in
the latter context, by producing descriptions of network data and using this
information for deviation analysis. A number of existing technologies are available for
this purpose, some of which are evaluated as part of the project.

As part of the investigative process, this report also details an architecture which is
designed to accommodate the deviation analysis process. This process is performed by
meta-mining techniques that characterise change between network data descriptions
produced at different times. When detecting large deviations between descriptions, the
system can produce appropriate alarm notices.

The outcomes of the IDDM project are hence the abilities to characterise network data
and to detect variations in these characteristics over time. Combining this capability
with tools that either recognise existing attack patterns or operate similarly to IDDM, it
strengthens the ability of intrusion detection professionals to recognise and potentially
react to unwanted violations to network operations.

Authors

Dr Tamas Abraham
Information Technology Division

Tamas Abraham is a research scientist in the Advanced Computer
Capabilities branch in the DSTO. He is a researcher in the
Crashcart project. Dr Abraham holds a Ph.D. in Computer Science
from the University of South Australia, Adelaide.

Contents

1. INTRODUCTION 3
1.1 Previous Related Work 3

1.1.1 Columbia University 3
1.1.2 Iowa State University 5

2. USING DATA MINING IN INTRUSION DETECTION: THE IDDM PROJECT.5
2.1 Project Summary 5

2.1.1 Fitting into Existing Frameworks 5
2.1.2 General Goals 6
2.1.3 Process 6

2.2 IDDM Details 6
2.2.1 Techniques 6
2.2.2 Data Elements To Mine 7

2.3 Association Rules for IDDM 7
2.3.1 Technique 7

2.4 Meta-Rules for IDDM 8
2.5 Characteristic Rules for IDDM 8

2.5.1 Technique 8
2.5.2 Benefits 9
2.5.3 Example rule sets 10

2.6 Clustering for IDDM 10

3. AN IDDM ARCHITECTURE .'. H
3.1 Details of the Architectural Design 11
3.2 Considerations 13

4. AGENT TOOLS 14
4.1 Mining Network Packets 14

4.1.1 Packet mining attributes 14
4.2 Mining Full TCP Connections 15

4.2.1 Connection Mining Attributes 15
4.2.2 Technique Employed 15

4.3 Agent Operation 16

5. META-MINING OBSERVATIONS 17
5.1 Meta-mining process overview 17
5.2 Meta-ruleset base expectations 18
5.3 Non-TCP record test 19
5.4 TCP test with 8 watches used 20
5.5 Meta-mining observations 20
5.6 Stability test on 8 watches a day 21
5.7 Stability test on services 22
5.8 Concerns and general comments 22

6. CONCLUSIONS 23

APPENDIX A: IDDM LIBRARY DESCRIPTION 25

A.l. Library Structure 25
A.2. Support Library 25
A.3. Data Mining Library 25
A.4. Itemset generation 26

DSTO-GD-0286

1. Introduction

As global networking becomes more widespread, the number of unwanted
violations to its normal operations are on the increase, be that for personal,
commercial or military advantage. Intrusion detection, a rapidly maturing field,
deals with the real time detection of such activities. It attempts to identify existing
attack patterns and recognise new intrusion methods, employing methods from
sciences such as mathematics, statistics and machine learning. Data mining, generally
perceived to be a tool to discover unknown regularities in data, also lends itself to
this task. In particular, it promises to help in the detection of previously unseen
attacks by establishing sets of commonly observed regularities in network data.
These sets can be compared to current traffic for deviation analysis. Data mining
techniques, however, are traditionally employed on large amounts of off-line data. It
therefore remains to be seen how well they are able to support ID systems commonly
required to operate in real time.

The object of this paper is to investigate the feasibility and effectiveness of a variety
of data mining techniques within intrusion detection. Without aiming to be
complete, we attempt to look at a range of knowledge discovery methods and their
potential use in detecting intrusions. The paper is sub-divided as follows. The
remainder of this section overviews existing solutions that combine the two
paradigms. Section 2 introduces our project and details some well-known data
mining techniques and their potential contribution to intrusion detection. Section 3
discusses an architecture implementing some of the ideas presented in Section 2,
whilst taking advantage of existing available infrastructure. Section 4 details the
implementation of a particular technique and its place within the project. Section 5
summarises results of experiments performed to test our meta-mining technique.
Section 6 presents some brief conclusions whilst the Appendix shows an overview of
existing algorithms.

1.1 Previous Related Work

Some interest has already been expressed in data mining as an aid to intrusion
detection. There are, however, differences in the approaches taken in the use of
mining techniques. The two examples presented below illustrate these differences
and provide an insight into the potentially diverse application of data mining for
intrusion detection purposes.

1.1.1 Columbia University

A pioneering research activity that emphasises data mining as the leading paradigm
in intrusion detection was MADAM ID, part of the larger JAM Project at the
Computer Science Department of Columbia University, lead by Salvatore Stolfo [1].

The original idea behind JAM (Java Agents for Meta-Learning) was to use data
mining techniques to correlate knowledge derived from separate, heterogeneous
data sets into a rule-set capable of providing a general description of an environment
comprising these sets. This work lead to the further use of data mining techniques to
build better models for intrusion detection by analysing audit data using associations

DSTO-GD-0286

and frequent episodes, and utilising the resulting rules when constructing ID
classifiers. The results from this effort are collectively labelled as MADAM ID
(Mining Audit Data for Automated Models for Intrusion Detection). The project has
received a number of distinctions from peers, such as achieving high scores at the
DARPA 1998 Offline Intrusion Detection Evaluation and being awarded Best Paper
in Applied Research at KDD 99 [2].

As an extension to the above achievements, Columbia University is currently
coordinating a project to create a complete intrusion detection system operating real-
time. The project, tentatively named Project IDS, is in its initial stages with further
details available on the Internet [3]. Below is a short list of some of their goals:

a Real-time operation of the IDS and adaptive anomaly training.
□ Coverage of entire attack space including both anomaly and misuse detection and

explanation of attacks.
a Automatic feature construction from data collected from multiple sources.
Q Cost based algorithms to decide if attacks are worth handling.
Q Link analysis to detect complex attacks possibly spread over space and time.

The accompanying intrusion detection system architecture is heavily modularised. A
number of components interoperate to make deductions on network and system
attacks. Accordingly, the implementation is divided into sub-projects:

Q HoBIDS - Host Based IDS which monitors specific hosts by analysing binaries
and process logs (for example, BSM logs on Solaris machines). It uses rules
supplied by rule generating components to detect attacks in a cost sensitive
manner. It supplies information to a data warehouse for off-line analysis.

Q HAUNT - A network based IDS analysing packets and detecting attacks based
on rules specified in N-code of the NFR system.

a AMG - Adaptive Model Generation builds and updates a model of the behaviour
of a system in real time using sensor data. It uses a probability-based data mining
algorithm in order to do so. Both models and formatted sensor data are stored in
a data warehouse, with XML representation of data and models.

Q DIDS - The Distributed IDS System coordinates the activity of host and network
based IDS and based on reports received makes decisions on attacks and
generates alarms. It applies activity association (for multiple reports arriving at the
same time) and link analysis (for temporally spread reports) to information
received from other components. It also contains an explanation engine to produce
natural language statements about observed attacks.

Q MEF - The Malicious program E-mail Filter monitors e-mail attachments and
stops viruses from spreading when one is found. It employs machine learning and
data mining techniques for detection, and uses an adaptive generalisation model to
discover malicious attachments and contains a reporting module for when one is
found.

Q DWARF - Data Warehousing for IDS centralises data collected from IDS systems
to facilitate the learning of models for intrusion detection. Several components in
Project IDS utilise and add to the contents of the data warehouse.

Q FWRAP - File System Wrappers monitor writes to the file system to detect
attacks.

Q ASIDS - The Advanced Sensors Project supplies data to a data warehouse for
learning.

DSTO-GD-0286

a IDSMODELS - A collection of algorithms to be employed in different
components of the IDS. They include techniques such as Sparse Markov Trees,
probabilistic graphs for sequences of system calls, clustering, probabilistic anomaly
detection, classification, boosting, link analysis, co-training, frequent episodes and
associations.

1.1.2 Iowa State University

A different approach is taken by Iowa State University in their design of an intrusion
detection system. Data mining techniques are incorporated into an agent based
architecture at high level in order to correlate information collected by low-level
agents [4]. The low-level agents are designed to propagate information upwards as
well as sharing information on their designated level. The expected benefits of this
design is the potential to recognise attacks spread over both space and time, localise
their origin and co-ordinate a suitable response. The system also illustrates a
successful combination of agent technologies with data mining.

At least some of the work in future intrusion detection approaches is likely to
proceed in a direction similar to that demonstrated by the works above. Data mining
hence may become a prominent component in large-scale IDS warranting continued
examination of other, potentially useful techniques.

2. Using Data Mining in Intrusion Detection: The
IDDM Project

The success of earlier attempts of the use of data mining in intrusion detection, as
outlined in the previous section, suggests that a review of available techniques can
help in identifying additional ones worth investigating.

2.1 Project Summary

The IDDM project (Intrusion Detection using Data Mining) aims to explore data
mining as a supporting paradigm in extending intrusion detection capabilities. Our
interest is to re-use, augment and expand on previous works as required and introduce
new principles from data mining that are considered good candidates for this
purpose. Rather than concentrating on the use of a particular technique in a certain
application instance, we intend to explore multiple uses for any given data mining
principle in a variety of ways.

2.1.1 Fitting into Existing Frameworks

The IDDM project is part of Crashcart, an internally developed ID toolkit at DSTO
[5]. It can therefore both rely on its front-end data gathering functionality and needs
to retain interoperability with this toolkit. It may also be tied in with other Defence
projects designed for protecting network security, particularly Shapes Vector [6].
This should provide additional tools already available in those projects for use
within IDDM (for example, alarms, visualisation paradigms and other analytical
features). There is also a possible requirement on IDDM outcomes to provide
interaction with these external projects.

DSTO-GD-0286

2.1.2 General Goals

As data mining normally excels at observing general regularities, the predominant
goal of the IDDM project is that of anomaly detection in network data at a relatively
high level, and the delegation of suspected problems to dedicated applications. The
expected benefits of such an approach are an increased ability to include large
distributed data sets in the detection process. In addition, a reduction in false alarms
is more likely as a result of delegating anomalies to more specialised low-level
detection applications.

2.1.3 Process

The initial stages of IDDM include the building of a data mining library that is a
subset of algorithms already in use for intrusion detection. Each algorithm is tested
and fineruned as it is developed, and fit into the larger IDDM model.

2.2 IDDM Details

Part of the purpose of this document is to overview existing techniques that may be
able to be employed in the mining of network data to detect intrusions. This section
presents some of the major techniques currently in use and discusses platforms for
their application.

2.2.1 Techniques

A number of data mining techniques can be used in intrusion detection, each with its
own particular advantage. The following categorisation lists some of the techniques
and the purposes for which they may be employed. In later sections, further
discussion is provided for techniques investigated within the IDDM framework.

Q Characterisation/Generalisation - Produces a general description of the nature of
the data. It can be used for deviation analysis if adequate difference is present in
data content.

a Classification - Creates a categorisation of data records. It could be used to detect
individual attacks, but as described by previous experiments in the literature, it is
prone to produce a high false alarm rate. This problem may be alleviated by
applying fine-tuning techniques such as boosting [7].

a Association - Describes relationships within data records. Detection of
irregularities may occur when many records exhibit previously unseen
relationships.

Q Frequent Episodes - Describes relationships in the data stream by recognising
records that occur together. For example, an attack may produce a very typical
sequence of records (similar to system call traces used in the Computer
Immunology project [8]). This technique may produce results for distributed
attacks or attacks with arbitrary noise inserted within.

Q Clustering - Groups records that exhibit similar characteristics according to some
pre-defined metrics. It can be used for general analysis similar to classification, or
for detecting outliers that may or may not represent attacks,

a Incremental updates - Keeps rule sets up-to-date to better reflect the current
regularities in the data.

DSTO-GD-0286

Q Meta-rules - Provides a description of changes within rule sets over time. It can
be used for trend analysis. It is probably not very useful for detecting individual
attacks, but can serve as a base of comparison when new, unusual rules appear.
For example, if a trend shows a steady increase in some network activity over
time, then a sudden increase in another type of activity may be suspicious, but
not necessarily an increase in the former.

2.2.2 Data Elements To Mine

The major contributor to the development of successful mining techniques is the
clear definition of the network data features that will be used in the creation of initial
rule sets. It is possible to add to or remove from a feature set later, and most
techniques will correctly operate with these modifications. However, it is likely that
the rule sets resulting from these changes will be different to those produced earlier,
and this will affect processes performing trend analysis.

There are different levels at which feature sets may be defined:

a Packet - Interesting details at this level are characteristics such as service type,
addresses, any special flags and so on.

Q Connection - Some of the same characteristics apply at this level as for packets,
with new ones being added such as duration, amount of data transferred and so
on.

a Connection content - The set of features required at this level are currently not
clearly defined, as relatively few mining approaches, such as text analysis, are
candidates for analysis at this level. The most likely data to be useful from
connection content is header information from Internet protocols for web
browsing or e-mail.

2.3 Association Rules for IDDM

Associations rule mining is one of the most popular techniques within data mining
and thus has been one of the first methods to be trialed in intrusion detection. Both
university projects mentioned in Section 1 have investigated and successfully utilised
it, and it features in our IDDM project. Its use in IDDM differs from previous
attempts in that it is mainly employed as a tool to generate observations about
network traffic for further processing, both at packet and at connection level. That is,
association mining acts as a sensor supplying rules as source data for higher level
processing, such as meta-mining. Further details on this role as a data gatherer can
be found in Section 4, where the association mining algorithm is incorporated into an
agent.

2.3.1 Technique

The association mining algorithm, as originally described in [9], finds relationships
within data in the form

A => B (s%, c%),

where A and B are sets of (binary) attributes occurring together in a database. The
percentages s% and c% express support and confidence for a rule described with the

7

DSTO-GD-0286

above formula. More precisely, the support of a rule is the percentage of records
containing both A and B, while the confidence of a rule is the percentage of records
containing A that also contain B. Usually, a pre-existing data set may be converted
into another containing only binary attributes so that association mining can
proceed.

Both support and confidence are user-defined variables that may be dynamically
adjusted during mining in order to obtain a desired final rule set. Association
mining, however, has its drawbacks:

a It works best when the number of attributes are large and records are sparsely
populated, that is, only a few attributes are set within each record. In the unusual
scenario where most or all attributes are set in every record, the final rule set may
contain far more rules than there are records.

Q No rules are generated for attributes that are not frequent enough, that is, for
those that do not reach the desired support.

Q It is often difficult to achieve a balance between the number of final rules and
their importance. Setting the required support and/or confidence levels high will
result in a smaller number of rules, but they are also likely to be ones that seem
too obvious to be useful observations. Lowering the percentages increases the
chance of finding more interesting rules, whilst also increasing the number of
rules, thus making it more difficult to analyse the final rule set.

2.4 Meta-Rules for IDDM

Meta mining is a concept that derives rules from several rule sets collected over a
period [10]. Each rule set is treated as a snapshot description of the data at a given
time. A meta-rule set relates any two given sets by describing rules that expired,
changed, remained unchanged or appeared new. In theory, it is possible to create
meta-rules of any type on any existing rule set types with some restrictions. Thus,
association meta-characteristic rules are just as possible as a combination of meta-
meta-rules at an arbitrary level of abstraction. In the IDDM project, meta-tests were
performed on association rules generated on network packets captured at separate
time intervals. The results are outlined in Section 5.

2.5 Characteristic Rules for IDDM

The purpose of characteristic rules is to provide a general description of a data
stream in order to facilitate evaluation of changes over time. Within the IDDM
project, they are used for monitoring changes over time, in fashion largely similar to
the use of association rules.

2.5.1 Technique

The original data characterisation technique, as described by [11], has three main
aspects:

Q Removal of unusable attributes
Q Concept ascension
Q Data compacting

DSTO-GD-0286

The first of these aspects is not relevant within the IDDM framework, as rule
generation is preceded with a transformation of net data into a relational database.
This means that no unnecessary/uncompactable attributes are stored. Usually,
attributes are removed only if they contain too many values that cannot be replaced
by higher level concepts, such as addresses. After transformation, every record in the
database represents a rule in itself with a support count of one for the rule.

Concept ascension is the replacement of attribute values with higher level concepts.
They are commonly controlled by thresholds, for example, the maximum number of
concepts allowed for a given attribute. The high and low level concepts are organised
into hierarchies, which are usually designed by experts possessing substantial
domain knowledge. Alternatively, concept hierarchies may be generated by
automatic means to avoid this often expensive and time-consuming step [12].

Data compacting means the deletion of duplicate entries from the relational table.
This includes an initial parsing of the database to remove duplicates from the
transformation of raw data into the database. As attribute values are replaced with
concepts, more and more records will contain the same attribute values. When a
particular duplicate is removed, a count for the original is increased to express the
support the given concept ascended record has. Concept ascension and data
compression continues until the original rule set is reduced to a desirable size.

Some of the thresholds that can be useful for characterisation are:

Q maximum number of concepts allowed for each attribute
a maximum number of generalised records in the final table
a a percentage above which an attribute value is not ascended when the rest is (for

example, if 5% of port numbers are a certain value, we may retain this value
while replacing other, less significant values with higher concepts)

2.5.2 Benefits

Applying characterisation to a data set has obvious benefits from the intrusion
detection viewpoint. However, some of the benefits come at a price. Below is a short
description of some of the advantages and disadvantages of employing characteristic
rules within an ID project:

Advantages
a Rules are high level, that is, the final descriptions are easily understandable.
□ Employs concept hierarchies that are user manageable.
a Reduces data space to desired compactness without loss (as opposed to

association rules where a minimum support needs to be met, otherwise some
attribute values are not included in the rule generation process).

Disadvantages
a Strictly off-line, it needs a suitably large initial data set and the algorithm is

relatively complex and may hence be slow.
Q Needs a relational database to store transformed data stream information.
a Not suited to pick up specific events in the data unless the concept hierarchies

and algorithm allow for it.
a Not suited for recognising specific new attacks (see previous point).

DSTO-GD-0286

2.5.3 Example rule sets

To provide a basis for comparison with association rules, a simple characteristic rule
mining algorithm has been implemented in the IDDM project. In contrast to
associations as discussed in later sections, this algorithm does not yet form an
integral part of the project. Figure 1 below illustrates some of the rules that can
currently be produced. Tests were performed on several smaller sets of data
generated on a local network with machines simulating use of some of the more
often used network protocols. The example below contains mainly UDP and Web
traffic. Note the small number of rules produced in the final set. Each rule is
expressed as a combination of packet type (ICMP, TCP, UDT and so on), a size
concept, and source and destination port concepts where applicable. Certain well-
known port numbers are placed high into the conceptual hierarchies in order to be
keep their values as long as possible in the rules. For example, port 8080, designated
as PROXY, did not get replaced by a higher level concept while the other port
numbers have been generalised into the concept OTHER (describing high port
numbers above 1024). As there were less than 10 different port numbers for UDP
traffic, they did not get replaced at all, which shows in the final rule set.

— Rule generation started
DDD Date: Tue Jun 6 09:51:08 2000
RRR Recordcount: 1018
MMM Maximum_Concepts_Used: 10

I 60 (0.002947 or 3/ 1018)
o TINY (0.133595 or 136/ 1018)
o SMALL (0.076621 or 78/ 1018)
T SMALLPROXY OTHER (0.049116 or 50/ 1018)
T TINY OTHERPROXY (0.182711 or 186/ 1018)
T TINY PROXY OTHER (0.084479 or 86/ 1018)
T ETHER PROXY OTHER (0.125737 or 128/ 1018)
T SMALLOTHERPROXY (0.014735 or 15/ 1018)
U TINY 43425 3000 (0.270138 or 275/ 1018)
u SMALL43425 3000 (0.020629 or 21/ 1018)
u SMALL 138 138 (0.004912 or 5/ 1018)
u TINY 137 137 (0.020629 or 21/ 1018)
u TINY 799 2049 (0.000982 or V 1018)
u TINY 2049 799 (0.000982 or V 1018)
u TINY 138 138 (0.009823 or 10/ 1018)
u TINY 1025 111 (0.000982 or V 1018)
u TINY 44% 1604 (0.000982 or V 1018)

*** Rule generation completed

Figure 1: Characteristic neftvork rules

2.6 Clustering for IDDM

Clustering is another possible technique that may yield results in the intrusion
detection context. As more and more intrusions are now spread over time and space,
these techniques may be able to discover such attempts by correlating seemingly
independent network activities. Clustering groups data according to their
"similarity", and this can be used to identify outliers not fitting into expected

10

DSTO-GD-0286

patterns (new attack types) or existing attacks previously identified to belong to
particular groups.

An existing example for the use of clustering for intrusion detection purposes can be
found in [13]. The paper presents an implementation of a one-pass clustering
technique that classifies normalised network connection data into clusters according
to a distance metric. Working on the assumptions that data with the same
classification are close to each other according to this metric, and that attacks
constitute only a small percentage of the data, it then labels clusters with relatively
small number of elements as anomalous. The algorithm was tested on the KDD99
intrusion data set [14] and was moderately successful in detecting intrusions while
keeping the false alarm rate down. Although the results are not outstanding, the
advantages of this technique are obvious: it does not require prior knowledge of data
contents as long as the assumptions above are satisfied. It is also capable of retraining
itself on-the-fly by creating new clusters as they appear and potentially re-classifying
existing ones as their relative membership increases/decreases. An additional
suggested use of this technique is to employ it as a sensor in a larger ID system.
Possible intrusions can be reported as they happen to a higher level decision making
module for handling. This module may receive information from other sensors and
can treat alarms from the clustering algorithm as only one of several sources.

3. An IDDM Architecture

This section discusses an architecture that has a number of desired properties to
satisfy the requirements for a modern intrusion detection tool. The ideas presented
here are not unlike those promoted by systems described in Section 1, and include
the following attributes:

o The architecture makes use of the data mining paradigm to help in the detection
of intrusions.

□ It facilitates operation in real-time or near-real time.
□ It maintains a central data and rule storage warehouse.
Q It is adaptive, that is, it constantly updates its rule sets to better fit the current

environment.
Q It interoperates with and incorporates existing tools available internally.

Some of above specifications require further discussion, which is provided in the
remainder of the section. Figure 2 below contains a possible architectural design
satisfying these conditions.

3.1 Details of the Architectural Design

As outlined earlier, intrusion detection concentrates on recognising two types of
possible attacks, those that have been encountered before, and previously unseen
ones. Although other detection tools employing data mining techniques often
attempt to capture both kinds of intrusions, the IDDM project focuses more on
recognising new attack types, or anomalies as they are often referred to. This is more
attune to the spirit of data mining emphasising the discovery of previously unseen
regularities in large data sets. A great number of tools already exist that cater for the
detection of existing attacks with varying degrees of success, and one or more of

11

DSTO-GD-0286

these tools can interoperate with IDDM outcomes to cover the full range of attack
scenarios.

KB Profiler

Alarm generator

Deviation analyser

Pre-processor

Network traffic

Figure 2: A possible IDDM architecture

The components of the architecture of Figure 2 are designed to satisfy the
requirements of the IDDM project. They are as follows:

Q The Tap is where network data is collected. It is simply an interface capable of
capturing information flowing by (such as a network card on a machine). The
location of the tap determines the localisation of intrusion detection. For example,
anomalies may be observed on a single machine, a network segment, or a
gateway. For our IDDM project, the information gathering at the tap can be done
with the aid of an existing Crashcart application (Sponge).

a The Raw Data Storage stores collected network data. Typically, it is a set of hard
drives where an application dumps information passing through the tap, usually
according to some filtering requirements.

a The Pre-processor handles the conversion of raw packet or connection data into a
format that mining algorithms can utilise and may store the results in the
knowledge base. It can perform a range of duties, such as additional filtering,
noise elimination, and include third party detection tools that recognise known
attack patterns.

a The Knowledge Base stores rules produced by mining and any additional
information used in the mining process. It may also hold information for the pre-
processor, such as patterns for recognising attacks and conversion templates.

a The Profiler is responsible for generating snapshot rule sets to be used for
deviation analysis. It can be triggered automatically based on time of day or the
amount of pre-processed data available.

12

DSTO-GD-0286

Q The Deviation Analyser examines rule sets in the knowledge base and creates a
description of differences by meta-learning. The results are stored in the
knowledge base for further reference. If necessary, it signals the alarm generator.
A strategy for invoking the deviation analyser could be periodic queries to the
knowledge base for the availability of new profiles. Alternatively, the profiler
may signal the analyser when a new profile is deposited to the knowledge base.

□ The Alarm Generator is responsible for notifying the administrator when the
deviation analyser reports unusual behaviour in the network stream. This can
take the form of e-mails, console alerts, log entries, or even be a component of a
visualisation tool.

3.2 Considerations

One of the benefits of our approach is that deployment of the system does not
require a-priori background knowledge. Data collection and rule generation
commences on live data at the time of installation and trends may be observed as
early as required. It is likely that in the initial operating stages there will be a larger
than usual number of false alarms, until a more stable description of normal network
data becomes available. Note that if the individual machine/network segment to be
protected is under attack during installation, then alarms will be triggered when the
environment resumes its normal state. It is therefore important to investigate the
cause of even these early alarms.

A requirement on the architecture is to allow for real or near real-time operation.
This can be the case for detecting known attacks by third party packages. Data can be
pushed through to the pre-processor stage in real-time. Profiling (and therefore,
deviation analysis), however, requires a certain amount of input data to form a
description. The rule base is continually evolving - it is adaptive - to reflect the
current behaviour of the system being monitored and is flexible to adjustments (for
example, the user may be able to force an intermediate profiling step). Nevertheless,
it may take some time before an appropriately large set of pre-processed data is
available and profiling can be triggered. Therefore, trend analysis performed under
the IDDM project is best described as near real-time.

The alarm generator, whilst performing its purpose, is only one tool of possibly
many that relates information to the user. It may be necessary to allow inspection of
the knowledge base contents to gain further insight into the rule collection. As rules
are often cryptic, this not only means the need for a good visualiser but potentially a
translator component to easily interpret the knowledge base contents It may also be
desirable to receive regular updates on the current state of the monitored
environment, such as changes that did not warrant alarms, and reports on evolving
trends.

A sensitive issue within any system monitoring trends is finding the correct balance
between updates. In our architecture, updates are suggested to be performed based
on a combination of time of day and input data set size. Using an initial periodic
cycle and a fixed size, these parameters may be adjusted automatically or by user
intervention, based on, for example, system performance and fluctuations in rule set
stability. Automation forms an important part of IDDM. Generally, the higher the
degree of automation the system achieves, the less the need for supervision by
experts or interaction with the user. This is usually desirable, because of, for

13

DSTO-GD-0286

example, its cost-cutting properties. On the other hand, full automation removes the
human element from the analysis, which at the current state of software intelligence
is possibly ill advised.

The architecture of Figure 2 describes componentry catering for a single data source.
It is conceivable to expand it to include several sources, for example, by inserting
several taps with supporting components up to the profiler level. Deviation analysis
may be performed by a single component or multiple ones (but not necessarily as
many as there are taps), whilst keeping a single knowledge base for storage. A model
like this could possibly enable detection of multi-system distributed attacks, but
likely to require additional higher level components to co-ordinate the operation and
analyse the outputs of current analytical components.

4. Agent Tools

The architectural design of Section 3 allows for the periodic invocation of programs
that analyse bulk sets of data as they become available. These programs are well
suited to take the form of agents whose functionality is to extract higher level
knowledge from (possibly pre-filtered and formatted) raw data. A common
characteristic of these programs is the ability to produce a variety of different
outputs according to user-controlled thresholds. As they can be put into operation
immediately when an appropriate amount of data is obtained, results are also
available near real-time. From an intrusion detection perspective, this functionality is
desirable, because in combination with other tools it may either help to detect new
attacks or prevent the escalation of attacks in progress.

4.1 Mining Network Packets

The network packet agent is a program based on the association rule mining
paradigm. Its aim is to profile raw network packets by observing commonly
occurring associations within individual packets. This information can then be used
by further analytical programs (such as meta-miners) to detect unusual behaviour in
the network stream. It needs to be reiterated that association mining is not well
suited to identify infrequently occurring patterns, that is, patterns with low support.
The control parameters of the mining process therefore play an important role on the
amount of data that will not be influencing the resulting rules.

4.1.1 Packet mining attributes

The packet-rnining algorithm concentrates mainly on the following packet attributes:

• Packet Type (ARP, ICMP, UDP, TCP, etc)
• Source and Destination Ports
• Packet Size
• TCP Flags

Both packet sizes and port numbers can have a large number of values that are not
practical to be implemented as separate entities. Instead, categories are introduced to
allow a range of values to be characterised by a single description. For example,
packet sizes are currently split into five categories, ranging from zero to the

14

DSTO-GD-0286

maximum size attainable on an Ethernet network. Category boundaries can be set by
domain experts, or by analysing the network stream over time for suitable values.
For port numbers, some often seen values are implicitly recorded while others are
put into two additional categories, one for reserved port numbers and another for the
rest.

4.2 Mining Full TCP Connections

The full TCP connection mining process is a variation of the packet mining technique
based on association mining as described above. Instead of analysing raw network
packets, rules are extracted to describe TCP connections. The difference between the
two processes is that full connection mining requires an intermediate step, namely
the generation of summary data about each connection.

4.2.1 Connection Mining Attributes

The connection mining routine will relinquish some of the attributes required for
packet mining and add new ones pertinent to TCP connections:

Packet Type is always TCP (no attributes needed)
Source and Destination Ports
Connection Duration
Amount of Data Transmitted each way
Ratio of Traffic (mcoming/Outgoing)
Average Payload Length (not including headers)
Unusual TCP Flags Used

Again, some of the attributes are best categorised as too many individual values exist
to be representable for the mining algorithm.

If some of the content, (typically, header information for specific protocols), is also
available, additional attributes can be added after investigating the text data
contained therein. A possible set of additional attributes may include for these
example protocols:

1) HTTP
a) User Agent (Mozilla or Other)
b) Operating System (Windows, Linux, Solaris and so on)

2) SMTP
a) Agent
b) Source/relay addresses

4.2.2 Technique Employed

Rather than operating on a raw network dump file, as is the case in our packet
mining, the full connection mining agent uses summary information to perform its
analysis. An algorithm is used to generate summary lines about each full TCP
connection found in a dump file. Modified Crashcart components are used to
perform this intermediate step. The resulting summary file is then parsed and
processed in a similar fashion to the network packet mining tool.

15

DSTO-GD-0286

4.3 Agent Operation

The agents are implemented as a set of three programs, two of which perform data
mining on their input while the third creates a summary connection information file.
Output is written to standard output in each case. The syntax of these programs is as
follows:

pcap21ogic [OPTIONS] <input-file>
connectinfo <network data file>

connect21ogic [OPTIONS] <input-file>

Connectinfo has the simplest syntax of the three as it performs a straightforward
summarising operation. It parses a network data file, identifies full connections and
generates summary information on each. The other two programs share their options
list and take two different kinds of input files. For pcap21ogic, this is either a network
data file similar to the one accepted by connectinfo, or an itemset file produced by
an earlier run of the program. For connect21ogic, the two alternatives are a
connection summary file output by connectinfo or an itemset file. The options
available for both programs include:

a Parameters to control the association mining process, such as the rule confidence
and support, and the maximum number of records to be read from the input file.

a Parameters to determine the format of the output which may vary from
traditional association rules to Prolog or CLIPS logic representation.

Q Two parameters to force an intermediate operation of the programs. Since
association mining is a two-step process, consisting of itemset creation and rule
generation, it is sometimes useful to be able to stop this process after the first
step. This is often the case when several different types of final rule output are
required. As itemset generation is by far the costlier of the two steps, it makes
sense to be able to store the intermediate itemset results and only repeat the
simpler rule generation several times to obtain various outputs.

Figure 3 shows some of the output produced by the agents. This particular example
was produced by association mining some 20,000 network connections containing a
fair number of attacks. They included host and port scans, where connections were
attempted to a large number of different addresses and port numbers in the hope of
finding available servers. This is primarily responsible for rules containing
descriptions such as Zero-size (no data has been transmitted) or Zero-Dur (the
connection attempt was not responded to). The numbers in brackets behind each
rule express confidence and support percentages for each rule.

16

DSTO-GD-0286

Tcp-Reset Src-Other -> Tcp-NoFin (0.9675,0.2811)
Tcp-Reset -> Tcp-NoFin Dest-Well-Known (0.8620, 0.2515)
Tcp-Reset Tcp-NoFin -> Dest-Well-Known (0.8924, 0.2515)
Tcp-Reset Dest-Well-Known -> Tcp-NoFin (1.0000,0.2515)
Tcp-NoFin Dest-Well-Known -> Tcp-Reset (0.5253,0.2515)
Tcp-Reset -> Src-Other Dest-Well-Known (0.8618, 0.2514)
Tcp-Reset Src-Other -> Dest-Well-Known (0.8653, 0.2514)
Tcp-Reset Dest-Well-Known -> Src-Other (0.9998, 0.2514)
Dest-Ftp -> Tcp-NoFin Src-Other (0.7156, 0.1982)
Tcp-NoFin Dest-Ftp -> Src-Other (1.0000,0.1982)
Src-Other Dest-Ftp -> Tcp-NoFin (0.7156, 0.1982)
Tcp-NoFin -> Src-Other Dest-Well-Known (0.6897, 0.4782)
Src-Other -> Tcp-NoFin Dest-Well-Known (0.5472, 0.4782)
Dest-Well-Known -> Tcp-NoFin Src-Other (0.8678, 0.4782)
Tcp-NoFin Src-Other -> Dest-Well-Known (0.6916, 0.4782)
Tcp-NoFin Dest-Well-Known -> Src-Other (0.9988, 0.4782)
Src-Other Dest-Well-Known -> Tcp-NoFin (0.8688, 0.4782)
Zero-Dur -> Zero-Size Tcp-NoAck Tcp-NoFin (0.9961, 0.1871)
Zero-Dur Zero-Size -> Tcp-NoAck Tcp-NoFin (1.0000,0.1871)
Zero-Dur Tcp-NoAck -> Zero-Size Tcp-NoFin (0.9961, 0.1871)
Zero-Dur Tcp-NoFin -> Zero-Size Tcp-NoAck (0.9961, 0.1871)
Zero-Dur Zero-Size Tcp-NoAck -> Tcp-NoFin (1.0000,0.1871)
Zero-Dur Zero-Size Tcp-NoFin -> Tcp-NoAck (1.0000,0.1871)
Zero-Dur Tcp-NoAck Tcp-NoFin -> Zero-Size (0.9961, 0.1871)
Zero-Dur -> Zero-Size Tcp-NoAck Src-Other (0.9941, 0.1867)

Figure 3: Nehvork connection rules

5. Meta-Mining Observations

This section presents the results of some of the IDDM experiments performed using
the association and meta-mining paradigms. First, there is short review of meta-
mining concepts from an earlier paper [10] and a description of the expected
behaviour of the test data. This is followed by detailing each test in its own sub-
section with comments regarding the outcome.

5.1 Meta-mining process overview

The basic meta-mining principle requires two existing rulesets to be separated into
four new rule categories holding old, new, changed and unchanged rules from rule
set one to rule set two. This is done in the following way: Some elements from the
structure of a rule are appointed to be 'self-defining', whilst others may change
without destroying the essence of a rule. For association rules, the support and
confidence percentages may be appointed as non-defining. That is, an association
rule is said to be unchanged from one rule set to another if it retains its structure A =>
B defined in Section 2.3.1, where both A and B contain the same set of attributes in
both rule sets. Change happens when a non-defining element of a rule exhibits
deviation larger than some pre-defined threshold. Rules become old when they no
longer appear in the second rule set with the same structure. New rules can appear
in the second rule set when they have structure that is not found in the first. The four

17

DSTO-GD-0286

categories holding these old, new, changed and unchanged rules form the meta-
ruleset base. The categories can be further mined individually as a data source for
higher level meta-rules describing regularities in each different category. The
resulting rules inherently express differences in separately compiled rule sets and
therefore are indicators of trends.

Rule Set 1 A B s c A B s c Rule Set 2

1 1 1 1

New Expired Unchinged Chained
A B s c A B s c A B s c A B s c d" d'

i i i i i i 1 1 1 1 1 i 1 1

Figure 4: Example association rule sets and meta-ruleset base

Some invariant observations that can be made from Figure 4 are:

Q The total number of rules T in a meta-ruleset base MisT = 0 + N + U + C, with
the letters O, N, U and C denoting the number of elements in the old, new,
unchanged and changed categories.

□ Suppose a meta-ruleset base Mi is constructed from rulesets Ri and Ri+i. Then, the
number of elements S and S+i in these rulesets can be expressed as totals of the
elements of some of the meta-ruleset base categories, Si = Oi + Ui + Q and Si+i = Nj
+ Ui + G.

a Since Si+i can also be expressed as S;+i = Oi+i + Ui+i + G+i from Ti+i, the total
number of rules in consequent meta-ruleset bases can be expressed T;+i = T; + N,+i
- Oi. This holds assuming the same starting rule set Ri+i is used with some new
Ri+2 toformMi+i.

5.2 Meta-ruleset base expectations

In a stable network stream, when mining two snapshots of the stream, we should
observe little change in the rules generated. That is, there should be a

a small number of rules in the old category,
a small number of rules in the new category,
a potentially very large number of rules in the unchanged category, and
a small to medium number of rules in the changed category

of the meta-ruleset base. This feature set can be artificially achieved by setting the
mining parameters, such as confidence and support percentage levels, until the
above holds. In general, any difference in the above expectations should be
immediately investigated. In the course of normal operations, only new and changed
rules should require attention.

18

DSTO-GD-0286

However, a network stream may not be stable, that is, it may exhibit fluctuations
between snapshots. If large numbers of rules disappear or re-appear between
snapshots, too much effort would be required to investigate these changes. The
solution to this problem would be the finetuning of mining parameters to achieve a
stable stream. Unfortunately, this may introduce yet another problem where too
many of the more interesting rules may disappear from the snapshot rule sets.

The meta-mining tests performed in the IDDM project were conducted on
association rules, with three adjustable thresholds. The first two, confidence and
support percentages, relate to the initial mining of snapshot rule sets. The third,
deviation percentage, is used to determine whether a rule changes from one rule set
to the next. That is, if deviation is observed in either the support or confidence of a
rule that is greater than the specified threshold, then the rule is judged to have
changed. Otherwise, it is classified into the unchanged meta-rule set base category.
The base association rule sets were generated by converting the characteristics of
network packets into bit patterns, with each packet potentially setting any of
approximately 50 bits.

An early example of meta-ruleset base category rule counts, generated using four
sets (night, morning, day and evening) of data extracted from a single day's traffic,
with low support, confidence and deviation thresholds is presented in Table 1.

Table 1: Meta-test of four day segments

Testl Old New Unchanged Changed
Night & Morning 751 1017 200 98
Morning & Day 333 668 721 261
Day & Evening 1336 613 104 210

This example shows meta-ruleset base category rule counts exhibiting too much
fluctuation between rule sets which makes it unusable for meta-rrtining purposes.

5.3 Non-TCP record test

Test results for the data set with all TCP packets removed yield a more stable picture.
The corresponding rule counts using support 0.01, confidence 0.3 and three different
deviation values 0.10/0.20/0.30 are shown in Table 2.

Table 2: Meta-test of four non-TCP day segments

Test 2 Old New Unchanged Changed
Night & Morning 0/0/0 0/0/0 83/107/107 24/24/0

Morning & Day 0/0/0 0/0/0 50/50/88 57/57/19
Day & Evening 0/0/0 0/0/0 50/69/107 57/38/0

The results from this test indicate that even with low (support, confidence)
percentage pairs it is possible to achieve desirable results if

a the deviation is set appropriately, and
a the rules are created for a specialised data set.

19

DSTO-GD-0286

That is, tests including TCP packets may require a much higher granularity than
initially used. This means increasing the length of the bit vectors by including more
details from the headers for each packet.

5.4 TCP test with 8 watches used

The following tests were performed to determine changes in rulesets over a period of
one day, but with higher resolution than in Test 1. Both the support values used to
generate the initial itemsets and the confidence values for subsequent rule sets are
varied extensively in order to produce results resembling the desired stable looking
data stream. This affects the number of total rules produced for each comparison (the
higher the support and confidence the fewer rules are produced in each set). Table 3
shows rule counts for a test performed with eight watches. Typically, the final
support values used were different not only between rule sets used for different
meta-ruleset base generations but also between rule set pairs used to produce a
single meta-ruleset base.

In the layout of Table 3, the left-most column includes two 3 hour periods on which
meta-mining was performed, with the decimal value displaying the support used to
generate the initial itemsets. For example, the expression 0002.01 refers to an
association rule generation period from midnight to just before 3am with support
0.01. The right-most pair of numbers indicates the confidence and deviation used for
meta-mining. Note that 0608.05 to 0911.10 produced a large number of old rules as
the best solution, therefore this period should be investigated further (although some
of the old rules seem to have reappeared in the next slot).

Table 3: Meta-test for 8 day segments

Test 31 Old New Unchanged Changed Confidence-deviation
0002.01 - 0305.01 54 0 526 138 (0.45, 0.25)
0305.01 - 0608.05 46 48 475 143 (0.45, 0.15)
0608.05 - 0911.10 261 83 193 80 (0.45, 0.25)
0911.05 -1214.05 88 266 658 238 (0.35, 0.20)
1214.20 -1517.20 60 0 262 31 (0.40, 0.15)
1517.20 -1820.20 4 7 228 121 (0.40, 0.20)
1820.10 - 2123.10 69 47 551 143 (0.40, 0.30)

5.5 Meta-mining observations

Although the above tables already serve as indication, they and further tests
conducted confirmed a large divergence in rule numbers for

a low support values, and
a low confidence values as expected.

1 Notice that the invariant rules outlined in the beginning of this section do not hold for the meta-ruleset
base category totals. This is because different mining parameters were used to generate the meta-
rulesets and thus the initial number of rules generated from a given dataset could vary for each test.

20

DSTO-GD-0286

There also seems to be a varying 'cut-off value in deviation that controls the number
of changed rules. That is, increasing deviation by a small step of 0.01 from a
particular value may cause changed rules to disappear from the meta-ruleset base,
even though a higher 0.1 increase may not have had much effect earlier for the same
two input rule sets.

It is probably not a good idea comparing rule sets produced with different support
and confidence values from the rneta-mining point of view as it dramatically affects
the number of old and new rules. This follows directly from a characteristic of
association mining, namely the lower the confidence and/or support, usually the
greater the number of rules in the rule set.

An algorithm to automatically find the best parameters for two given itemsets has
been implemented, operating on the observation that deviation controls the number
of changed rules versus unchanged rules, and confidence and support control the
number of old and new rules in the meta-ruleset base construction. Although
confidence and support affect the number of changed and unchanged rules via
affecting the total number of rules generated from itemsets, these two parameters are
used to control only the old and new rules. The order of preference to achieve
optimal threshold values hence is to

Q increase deviation to control changed and unchanged rule count to fall below
pre-defined percentages of the total rule count,

a increase confidence by a small amount up to a pre-specified maximum to control
new and old rule counts to fall below pre-defined percentages of the total rule
count, and

□ if the above fails, increase support by a small amount up to a given maximum to
control new and old rule counts to fall below pre-defined percentages of the total
rule count.

It is not guaranteed that this process terminates with a result that is within the
desired guidelines. It is also not guaranteed that a solution found will be the optimal
solution, and not a local nunimum. However, exhaustive search is not used in the
program to avoid extensive running times as local minimums should already
provide a good indication of the differences between rule sets.

The above program, although initially designed for testing purposes, could also be
used for

Q measuring the stability of a data stream by outputting support, confidence and
deviation triplets satisfying our pre-defined perception of a stable data stream for
each snapshot, and

□ as an alert mechanism to be triggered when the above triplets exhibit a large
deviation from usual values.

5.6 Stability test on 8 watches a day

The aforementioned parameter-finding program has been used to attain optimal
support, confidence and deviation triplets when comparing watches intra- and inter-
days using filtered net data obtained over the course of several days. As some
periods during each day may be relatively inactive, rather than sticking to strict

21

DSTO-GD-0286

calendar day limits, each data set to be partitioned may have been collected over
several days. This ensures that enough data is present in a given watch. This also
means, that the day-by-day comparison is rather a short period-by-short period
comparison which we believe still retains the original intention of comparing data by
time-of-day.

A number of observations have been made on the streams collected this way, some
of which have been discussed earlier. A default support, confidence, deviation triplet
of (0.01, 0.15, 0.1) has been used by parameter-finding algorithm with 0.05
increments for each element:

1. For watches within (our definition of) a 'day', the triplets generally exhibited
large variations, indicating a shift in the use of services/traffic flow as the day
progresses. This is consistent with our results presented in Table 1 and to some
degree, Table 3.

2. When comparing the same watches on separate days, the results are mixed. In
some cases, very little difference is observed, in others, large change between rule
sets is obvious. In many occasions this also depends on the time of day, that is,
day watches may fluctuate more than evening ones.

3. Out of curiosity, tests were also performed for different watches on separate
days, for example comparing the period at midnight on one day to a period
during the day on another. The expectation was to find large differences in the
rules, which was largely supported. However, in some cases, virtually no
difference was observed.

The anomalies observed against expectations in points 1 and 2 above have been
found to attribute to stream content. Some of the data sets were found to be largely
homogenous (eg. containing mainly FTP packets), which resulted in the unusual
results indicating no rule changes within a day or across separate watches on
different days. When the data contained diverse information - in this case, UDP,
ICMP and TCP data (mainly ports 21 FTP, 53 DOMAIN and 119 NNTP) -, the rule
sets were changing as expected during the day (eg. FTP did not usually occur outside
working hours). Rules in the same timeslots across days also exhibited at least a
modest level of similarity. Typically, the initial triplet of (0.01, 0.15, 0.1) changed to
values around (0.06 - 0.16, 0.25 - 0.40, 0.10 - 0.45) when satisfying our stability
requirement. Higher support and confidence values result in a significant loss of
rules in both sets and indicate that they largely differ.

5.7 Stability test on services

Tests were also performed for TCP data associated with a particular service, in this
case FTP. The results were encouraging, with very little difference observed both
across days and within days. There were, however, some exceptions, which could be
explained by the lack of data volume in certain time periods.

5.8 Concerns and general comments

Despite promising initial results with meta-mining, some problems need to be
addressed before consideration can be given to the further development of this
particular part of the project:

22

DSTO-GD-0286

Q Dependencies within the attributes being mined. Some packet attributes are
clearly dependent on others (for example, TCP attributes cannot be set if the IP
packet does not carry a TCP packet as payload).

a Difficulty in tailoring attributes for mining special data, for example services.
Currently, the bits representing attributes and their manipulation are hard-coded
and the program needs to be re-compiled for every service. There is also some
difficulty in achieving an optimal set of attributes for mining. It would be useful
to present attributes as a plug-in module to the main mining algorithms.

a Data diversity/volume. During testing, there were sometimes very small sets of
data available. Rather than splitting into watches by time, watches by volume
could be used. This requires the modification of the data transformation
program.

Q Other than associations, characterisation may be used to describe the general
contents of a data stream. A simple algorithm (attribute-oriented induction) that
uses domain knowledge is available for this purpose and could be tested to
produce a more compact and possibly better description of a net data slice, as
illustrated in Section 2.5.

Q Classification remains the best candidate to capture 'unusual' behaviour in the
data, eg. existing attacks. However, changes in classification models over time are
probably not as interesting as changes in net data characteristics for finding
unknown attacks.

6. Conclusions

Whilst there have been successful applications of data mining techniques in the field
of intrusion detection, it is clear that there are further possibilities for the use of the
technology. This paper explored some of these additional opportunities, especially
focusing on recognising trends in the inherently temporal network data flow. We
have presented an overview of techniques that are good candidates for this purpose,
and described an architecture facilitating trend analysis requirements.

Initial experiments using components of the architecture indicate that real-time
operation is difficult to achieve. Results are produced only after sufficient amount of
data is collected and analysed, which can be more appropriately described as near
real-time operation. This time lag increases the likelihood of new types of short
duration attacks being missed while in progress if they terminate before the next rule
update is performed. The chance of this occurring may be reduced by performing
updates more frequently on smaller input data sets. However, this may adversely
affect rule set stability, by increasing the number of alarms generated due to changes
in rule sets over time.

References

[1] Stolfo, S., Prodromidis, A., Tselepsis, S., Lee, W., Fan, W. & Chan, P. (1997) "JAM:
Java Agents for Meta-Learning over Distributed Databases", Proceedings of the Third
International Conference Knowledge Discovery and Data Mining.
[2] Lee, W., Stolfo, S. & Mok, K. (1999) "Mining in a Data-flow Environment:
Experience in Network Intrusion Detection", Proceedings of the Fifth ACM S1GKDD

23

DSTO-GD-0286

International Conference on Knowledge Discovery and Data Mining (KDD 99), San Diego,
USA.
[3] Intrusion Detection System homepage URI: http://www.cs.columbia.edu/ids/.
[4] Helmer, G. G., Wong, J. S. K., Honavar, V. & Miller, L. (1999) "Intelligent Agents
for Intrusion Detection", Proceedings of the IEEE Information Technology Conference,
Syracuse, USA.
[5] Crashcart Documentation, DSTO, Australia.
[6] Anderson, M., Engelhardt, D., Fiddyment, C., Marriott, D., North, C. &
Rajaratnam, D. (2000) "Shapes Vector: An Overview", DSTO General Document
DSTO-GD-0205, DSTO, Australia.
[7] Schapire, R. E. (1999) "A Brief Introduction to Boosting", Proceedings of tlie
Sixteenth International Joint Conference on Artificial Intelligence, Vol 2:1401-1406.
[8] Hofmeyr, S. A., Forrest, S. & Somayaji, A. (1998) "Intrusion Detection using
Sequences of System Calls", Journal of Computer Security, 6:151-180.
[9] Agrawal, R., Imielinski, T. & Swami, A. (1993) "Mining Association Rules
between Sets of Items in Large Databases", Proceedings of the 1993 International
Conference on Management of Data (SIGMOD 93), Washington, USA.
[10] Abraham, T. & Roddick, J. F. (1999) "Incremental Meta-Mining from Large
Temporal Data Sets", Advances in Database Technologies, Proceedings of tlie First
International Workshop on Data Warehousing and Data Mining, DWDM'98, Lecture
Notes in Computer Science, Berlin. Springer-Verlag. 1552:41-54.
[11] Han, J., Cai, Y. & Cercone, N. (1992) "Knowledge Discovery in Databases: An
Attribute-Oriented Approach", Proceedings of the 18th International Conference on Very
Large Data Bases, Vancouver, Canada.
[12] Han, J. and Fu, Y. (1994) "Dynamic Generation and Refinement of Concept
Hierarchies for Knowledge Discovery in Databases", Proceedings of AAAF94
Workshop on Knowledge Discovery in Databases (KDD'94), Seattle, USA, pp. 157-168.
[13] Portnoy, L. (2000) "Intrusion Detection with Unlabeled Data using Clustering",
Undergraduate Thesis Paper, Department of Computer Science, Columbia University,
New York, USA.
[14] KDD Cup 1999 Data Set, used for The Third International Knowledge Discovery
and Data Mining Tools Competition, one of several possible homepage URIs:
http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html.

24

DSTO-GD-0286

Appendix A: IDDM Library Description

This Appendix lists the algorithms that were created as part of a data mining library
to be used for the Intrusion Detection with Data Mining project.

A.l. Library Structure

The data mining library currently consists of at least two separate components:

a Support routines
a Data mining routines

♦ Association and meta-mining routines
♦ Input/output operations for mining results
♦ Future iruning techniques

A.2. Support Library

The support library contains generic functions that are used by the data mining
algorithms and are not directly available as part of the standard C libraries. They
include:

a Bit-wise operators to set/clear/negate a particular bit in memory.
a Print routines to output a portion of memory to stderr as a bitvector/bitmatrix.
a An operator to copy a bitvector into the appropriate row of a bitmatrix.

A.3. Data Mining Library

The data mining library consists of algorithms that perform rule extraction as well as
the necessary input/output operations for reading and converting data and
presenting results. Figure 5 illustrates the set of routines and files involved in
extracting association and meta-association rules for the IDDM project.

Association mining is performed in two steps, itemset creation and rule generation.
Separate routines exist for each of these two steps which allows execution to stop
midway. The major advantage of this implementation is that by supplying different
rule generation algorithms several different output formats may be generated from
the itemsets created in the first step. The actual itemset generator is implemented as a
binary association miner that does most of its work in memory and requires only a
single pass over the data. Therefore it is well suited to extract rules from a data-flow
environment where actual data may not be saved to file but transformed directly into
input for the mining algorithm.

25

DSTO-GD-0286

pcap file grabpacket file metaitemset file

Figure 5: Association mining of net data

A.4. Itemset generation

The itemset generation algorithm runs on a bitmatrix where one dimension is the
number of bits representing data elements (attributes) and the other the number of
records. The length of the first dimension is rounded up to nearest integer divisible
by eight for memory management purposes. This means that some bits at the end of
each record may not be used. The bitmatrix used as input is generated from raw-
network or connection data by separate conversion algorithms.

The output from the algorithm is an itemset chain where each element references a
group of items (represented by bits) that occur together with sufficient support. This
support value, expressed as a percentage of all records, is supplied as a parameter to
the algorithm and is adjustable by the user. An invariant of the itemset chain
representation, which is exploited in the implementation of the algorithm, is that
smaller sized itemsets are found earlier in the itemset chain, and for each fc-length
itemset, the indexes of the bits making up the itemset are ordered by magnitude both
within a single itemset and also within all k-length itemsets. This form of pre-sorting
greatly reduces execution time. The construction of itemsets also relies heavily on the
observation that if an itemset is large, that is, has enough support, then all of the
smaller itemsets that can be constructed from it must also be large. This explains the
following logic employed by the algorithm:

Step 1: Loop through the data and find all 1-large itemsets
Step 2: For every pair of existing /c-large itemsets

Check if the first k-1 elements are the same

26

DSTO-GD-0286

If SO,

Construct a k+1 itemset comprising of the common k-\ elements and the k-
th element from each of the pair
Check if the itemset has enough support
If so,

add to the end of the itemset chain2

Step 3: See if any itemsets have been created in Step 2.
If so,

increase k
go to Step 2

Because of processing taking place in memory, the algorithm may have high memory
requirements. This is contrasted against the fact that only single access to each data
record is required, when they are transformed into a binary representation. The
binary bitmatrix is then scanned once to produce 1-large itemsets as described in
Step 1. After this step, this potentially considerably sized bitmatrix could be
discarded as the support of potential larger itemsets can be established from the
conjunction of support vectors stored for each 1-itemset. This approach ensures that
subsequent itemsets are constructed faster, as only a single AND operation is needed
as opposed to k for a /c-large itemset. It has, however, the drawback of potentially
using even more memory. In the worst case scenario, when every element is a large
itemset, for example, when every bit of the bitmatrix is set to 1, the memory
requirement increases exponentially. This can amount to a huge additional memory
requirement and is probably not a plausible solution in the above case. A better
approach would be to not store the support vector for each itemset, but compute it
again when necessary. This operation would be far more costly than a simple bitwise
AND of two existing vectors, as for a potential /c-itemset this means k AND
operations. In addition, these AND operations would be performed for each bit, as
support vectors are vertical (columns of) in the bitmatrix, while support vectors
stored in itemsets are horizontal and thus the AND operation is available for bytes
rather than bits. The extra cost of additional AND operations can be relieved
somewhat with the use of intermediate support vectors in Step 2, though.

If, however, the number of 1-itemsets is only a small percentage of the number of
elements (which heuristicaHy is often the case), the total memory needed may not be
much larger, or even smaller than the original size of the bitmatrix. In this case,
discarding the original bitmatrix after Step 1 and using support vectors instead may
be justifiable.

2 Note that this logic ensures the appropriate ordering of itemsets/elements within
itemsets mentioned earlier.

27

DSTO-GD-0286

DISTRIBUTION LIST

IDDM: Intrusion Detection using Data Mining Techniques

T. Abraham

AUSTRALIA

DEFENCE ORGANISATION

Task Sponsor
DISG - Desk Officer MAJ Brenda Sharp

S&T Program
Chief Defence Scientist 1
FAS Science Policy f Shared Copy
AS Science Corporate Management
Director General Science Policy Development
Counsellor Defence Science, London (Doc Data Sheet)
Counsellor Defence Science, Washington (Doc Data Sheet)
Scientific Adviser to MRDC Thailand (Doc Data Sheet)
Scientific Adviser Policy and Command 1
Navy Scientific Adviser (Doc Data Sheet and distribution list)
Scientific Adviser - Army (Doc Data Sheet and distribution list)
Air Force Scientific Adviser 1
Director Trials 1

Electronics and Surveillance Research Laboratory
Director (Doc Data Sheet and distribution list)
Chief of Information Technology Division 1
Research Leader Advanced Computer Capabilities 1
Michael Pope 1
Tamas Abraham 1

DSTO Library and Archives
Library Fishermans Bend (Doc Data Sheet)
Library Maribyrnong (Doc Data Sheet)
Library Salisbury 1
Australian Archives 1
Library, MOD, Pyrmont (Doc Data Sheet)
US Defense Technical Information Center 2
UK Defence Research Information Centre 2
Canada Defence Scientific Information Service 1
NZ Defence Information Centre 1
National Library of Australia 1

DSTO-GD-0286

Capability Systems Staff
Director General Maritime Development (Doc Data Sheet)
Director General Aerospace Development (Doc Data Sheet)

Knowledge Staff
DGC4 (Doc Data Sheet)
DGISREW R1-3-A142 CDRE Russ Crane, Canberra ACT 2600 1
DGDKNIT R1-5-A165, Canberra ACT 2600 (Doc Data Sheet)

Army
ASNSO ABCA, Puckapunyal 4
SO (Science), DJFHQ(L), MILPO Enoggera, Queensland 4051 (Doc Data Sheet)

Air Force
IO SQN WGCDR Alex Gibbs 1

Intelligence Program
DGSTA Defence Intelligence Organisation 1
Manager, Information Centre, Defence Intelligence Organisation 1

Other Defence Departments
DSD 1

Corporate Support Program
Library Manager, DLS-Canberra 1

UNIVERSITIES AND COLLEGES
Australian Defence Force Academy

Library 1
Head of Aerospace and Mechanical Engineering 1

Hargrave Library, Monash University (Doc Data Sheet)
Librarian, Flinders University 1

OUTSIDE AUSTRALIA

ABSTRACTING AND INFORMATION ORGANISATIONS
Library, Chemical Abstracts Reference Service 1
Engineering Societies Library, US 1
Materials Information, Cambridge Scientific Abstracts, US 1
Documents Librarian, The Center for Research Libraries, US 1

INFORMATION EXCHANGE AGREEMENT PARTNERS
Acquisitions Unit, Science Reference and Information Service, UK 1
Library - Exchange Desk, NIST, US 1

SPARES 5

Total number of copies: 42

Page classification: UNCLASSIFIED

DEFENCE SCIENCE AND TECHNOLOGY ORGANISATION
DOCUMENT CONTROL DATA 1. PRIVACY MARKING/CAVEAT (OF

DOCUMENT)

2. TITLE

IDDM: Intrusion Detection using Data Mining Techniques

3. SECURITY CLASSIFICATION (FOR UNCLASSIFIED REPORTS
THAT ARE LIMITED RELEASE USE (L) NEXT TO DOCUMENT
CLASSIFICATION)

Document
Title
Abstract

(U)
(U)
(U)

4. AUTHOR(S)

Tamas Abraham

5. CORPORATE AUTHOR

Electronics and Surveillance Research Laboratory
PO Box 1500
Salisbury SA 5108 Australia

6a. DSTO NUMBER
DSTO-GD-0286

6b. AR NUMBER
AR-011-868

6c. TYPE OF REPORT
General Document

7. DOCUMENT DATE
May 2001

8. FILE NUMBER
N9505-21-38

9. TASK NUMBER
JNT 98/152

10. TASK SPONSOR
DISG

11. NO. OF PAGES
34

12. NO. OF
REFERENCES
14

13. URL on the World Wide Web

http://www.dsto.defence.gov.au/corporate/reports/DSTO-GD-0286.pdf

14. RELEASE AUTHORITY

Chief, Information Technology Division

15. SECONDARY RELEASE STATEMENT OF THIS DOCUMENT

Approved for public release

OVERSEAS ENQUIRIES OUTSIDE STATED LIMITATIONS SHOULD BE REFERRED THROUGH DOCUMENT EXCHANGE, PO BOX 1500, SALISBURY, SA 5108

16. DELIBERATE ANNOUNCEMENT

No Limitations

17. CASUAL ANNOUNCEMENT Yes
18. DEFTEST DESCRIPTORS

Intrusion Detection
Computer Security
Intelligent Agents
Knowledge Discovery

19. ABSTRACT

The IDDM project aims to determine the feasibility and effectiveness of data mining techniques in real-
time intrusion detection and produce solutions for this purpose.

Traditionally, data mining is designed to operate on large off-line data sets. Previous attempts to apply
the discipline in real-time environments met with varying success. In this paper, we overview earlier
attempts to employ data irünirig principles in intrusion detection and present a possible system
architecture for this purpose. As a consequence, we show that by combining data mining algorithms with
agent technologies, near real-time operation may be attained.

Page classification: UNCLASSIFIED

